Accelerate the ePC-SAFT-DFT Calculation with the Chebyshev Pseudospectral Collocation Method
نویسندگان
چکیده
منابع مشابه
Chebyshev pseudospectral collocation for parabolic problems with non- constant coefficients
This paper analyses a Chebyshev pseudospectral collocation semidiscrete (continuous in time) discretization of a variable coefficient parabolic problem. Optimal stability and convergence estimates are given. The analysis is based on an approximation property concerning the GaussLobatto-Chebyshev interpolation operator.
متن کاملGeneralized Chebyshev Collocation Method
In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower deg...
متن کاملOn a Modiied Chebyshev Pseudospectral Method
presents a modiied Chebyshev pseudospec-tral method, involving mapping of the Chebyshev points, for solving rst-order hyperbolic initial boundary value problems. It is conjectured that the time step restriction for the modiied method is O(N ?1) compared to O(N ?2) for the standard Chebyshev pseudospectral method, where N is the number of discretization points in space. In the present paper we s...
متن کاملThe Lanczos-Chebyshev Pseudospectral Method for Solution of Differential Equations
In this paper, we propose to replace the Chebyshev series used in pseudospectral methods with the equivalent Chebyshev economized power series that can be evaluated more rapidly. We keep the rest of the implementation the same as the spectral method so that there is no new mathematical principle involved. We show by numerical examples that the new approach works well and there is indeed no sign...
متن کاملSuperconvergence of a Chebyshev Spectral Collocation Method
We reveal the relationship between a Petrov–Galerkin method and a spectral collocation method at the Chebyshev points of the second kind (±1 and zeros of Uk) for the two-point boundary value problem. Derivative superconvergence points are identified as the Chebyshev points of the first kind (Zeros of Tk). Super-geometric convergent rate is established for a special class of solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Industrial & Engineering Chemistry Research
سال: 2021
ISSN: 0888-5885,1520-5045
DOI: 10.1021/acs.iecr.1c01077